Solved Problems

SAMPLE SPACES AND EVENTS

- 3.1. Let A and B be events. Find an expression and exhibit the Venn diagram for the event:
 - (a) A but not B, (b) neither A nor B, (c) either A or B, but not both.
 - (a) Since A but not B occurs, shade the area of A outside of B, as in Fig. 3-7(a). Note that B^c , the complement of B, occurs, since B does not occur; hence A and B^c occur. In other words, the event is $A \cap B^c$.
 - (b) "Neither A nor B" means "not A and not B" or $A^c \cap B^c$. By DeMorgan's law, this is also the set $(A \cup B)^c$; hence shade the area outside of A and outside of B, that is, outside $A \cup B$, as in Fig. 3-7(b).
 - (c) Since A or B, but not both, occurs, shade the area of A and B, except where they intersect, as in Fig. 3-7(c). The event is equivalent to the occurrence of A but not B or B but not A. Thus, the event is $(A \cap B^c) \cup (B \cap A^c)$. Alternately, the event is $A \oplus B$, the symmetric difference of A and B

(a) A but not B.

(b) Neither A nor B.

(c) A or B, but not both.

Fig. 3-7

- 3.2. Let A, B, C be events. Find an expression and exhibit the Venn diagram for the event:
 - (a) A and B but not C occurs, (b) only A occurs.
 - (a) Since A and B but not C occurs, shade the intersection of A and B which lies outside of C, as in Fig. 3-8(a). The event consists of the elements in A, in B, and in C^c (not in C), that is, the event is the intersection $A \cap B \cap C^c$.

(a) A and B but not C occurs.

(b) Only A occurs.

Fig. 3-8

(b) Since only A is to occur, shade the area of A which lies outside of B and C, as in Fig. 3-8(b). The event consists of the elements in A, in B^c (not in B), and in C^c (not in C), that is, the event is the intersection $A \cap B^c \cap C^c$.

3.3. Let a coin and a die be tossed; and let the sample space S consist of the 12 elements:

 $S = \{H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6\}$

Express explicitly the following events:

- (a) $A = \{\text{heads and an even number}\}, (b) B = \{\text{a number less than 3}\},$
- (c) $C = \{\text{tails and an odd number}\}.$
- (a) The elements of A are those elements of S which consist of an H and an even number; hence

$$A = \{H2, H4, H6\}$$

(b) The elements of B are those elements of S whose second component is less than 3, that is, 1 or 2; hence

$$B = \{H1, H2, T1, T2\}$$

(c) The elements of C are those elements of S which consist of a T and an odd number; hence

$$C = \{T1, T3, T5\}$$

3.4. Consider the events A, B, C in the preceding Problem 3.3. Express explicitly the event that:

- (a) A or B occurs.
- (b) B and C occur.
- (c) Only B occurs.

Which pair of the events A, B, C are mutually exclusive?

(a) "A or B" is the set union $A \cup B$; hence

$$A \cup B = \{H2, H4, H6, H1, T1, T2\}$$

(b) "B and C" is the set intersection $B \cap C$; hence

$$B \cap C = \{T1\}$$

(c) "Only B" consists of the elements of B which are not in A and not in B, that is, the set intersection $B \cap A^c \cap C^c$; hence

$$B\cap A^c\cap C^c=\{H1,\,T2\}$$

Only A and C are mutually exclusive, that is, $A \cap C = \emptyset$.

- 3.5. A pair of dice is tossed and the two numbers appearing on the top are recorded. Recall that S consists of 36 pairs of numbers which are pictured in Fig. 3-3. Find the number of elements in each of the following events:
 - (a) $A = \{\text{two numbers are equal}\}$
- (c) $C = \{5 \text{ appears on first die}\}$
- (b) $B = \{\text{sum is } 10 \text{ or more}\}$
- (d) $D = \{5 \text{ appears on at least one die} \}$

Use Fig. 3-3 to help count the number of elements in each of the events:

- (a) $A = \{(1,1), (2,2), \ldots, (6,6)\}, \text{ so } n(A) = 6.$
- (b) $B = \{(6,4), (5,5), (4,6), (6,5), (5,6), (6,6)\}, \text{ so } n(B) = 6.$
- (c) $C = \{(5,1), (5,2), \ldots, (5,6), \text{ so } n(C) = 6.$
- (d) There are six pairs with 5 as the first element, and six pairs with 5 as the second element. However, (5,5) appears in both places. Hence

$$n(D) = 6 + 6 - 1 = 11$$

Alternately, count the pairs in Fig. 3-3 which are in D to get n(D) = 11.

FINITE EQUIPROBABLE SPACES

- **3.6.** Determine the probability p of each event:
 - (a) An even number appears in the toss of a fair die.
 - (b) At least one tail appears in the toss of 3 fair coins.
 - (c) A white marble appears in the random drawing of 1 marble from a box containing 4 white, 3 red, and 5 blue marbles.

Each sample space S is an equiprobable space. Hence, for each event E, use

$$P(E) = \frac{\text{number of elements in } E}{\text{number of elements in } S} = \frac{n(E)}{n(S)}$$

- (a) The event can occur in three ways (a 2, 4, or 6) out of 6 equally like cases; hence p = 3/6 = 1/2.
- (b) Assuming the coins are distinguished, there are 8 cases:

Only the first case is not favorable; hence p = 7/8.

- (c) There are 4+3+5=12 marbles of which 4 are white; hence p=4/12=1/3.
- 3.7. A single card is drawn from an ordinary deck S of 52 cards. (See Fig. 3-4.) Find the probability p that the card is a: (a) king, (b) face card (jack, queen, or king), (c) red card (heart or diamond), (d) red face card.

Here n(S) = 52.

- (a) There are 4 kings; hence p = 4/52 = 1/13.
- (b) There are 4(3) = 12 face cards; hence p = 12/52 = 3/13.
- (c) There are 13 hearts and 13 diamonds; hence p = 26/52 = 1/2.
- (d) There are 6 face cards which are red; hence p = 6/52 = 3/26.
- **3.8.** Consider the sample space S and events A, B, C in Problem 3.3 where a coin and a die are tossed. Suppose the coin and die are fair; hence S is an equiprobable space. Find:
 - (a) P(A), P(B), P(C), (b) $P(A \cup B)$, $P(B \cap C)$, $P(B \cap A^c \cap C^c)$

Since S is an equiprobable space, use P(E) = n(E)/n(S). Here n(S) = 12. We need only count the number of elements in each given set, and then divide by 12.

- (a) By Problem 3.3, P(A) = 3/12, P(B) = 4/12, P(C) = 3/12.
- (b) By Problem 3.4, $P(A \cup B) = 6/12$, $P(B \cap C) = 1/12$, $P(B \cap A^c \cap C^c) = 2/12$.
- 3.9. A box contains 15 billiard balls which are numbered from 1 to 15. A ball is drawn at random and the number recorded. Find the probability p that the number is:
 - (a) even, (b) less than 5, (c) even and less than 5, (d) even or less than 5.
 - (a) There are 7 numbers, 2, 4, 6, 8, 10, 12, 14, which are even; hence p = 7/15.
 - (b) There are 4 numbers, 1, 2, 3, 4, which are less than 5, hence p = 4/15.
 - (c) There are 2 numbers, 2 and 4, which are even and less than 5; hence p = 2/15.
 - (d) By the addition rule (Theorem 3.6),

$$p = \frac{7}{15} + \frac{4}{15} - \frac{2}{15} = \frac{9}{15}$$

Alternately, there are 9 numbers, 1, 2, 3, 4, 6, 8, 10, 12, 14, which are even or less than 5; hence p = 9/15.

3.10. A box contains 2 white sox and 2 blue sox. Two sox are drawn at random. Find the probability p they are a match (same color).

There are $C(4,2) = {4 \choose 2} = 6$ ways to draw 2 of the sox. Only two pairs will yield a match. Thus p = 2/6 = 1/3.

3.11. Five horses are in a race. Audrey picks 2 of the horses at random and bets on them. Find the probability p that Audrey picked the winner.

There are $C(5,2) = {5 \choose 2} = 10$ ways to pick 2 of the horses. Four of the pairs will contain the winner. Thus, p = 4/10 = 2/5.

3.12. A class contains 10 men and 20 women of which half the men and half the women have brown Find the probability p that a person chosen at random is a man or has brown eyes.

Let $A = \{\text{men}\}, B = \{\text{brown eyes}\}.$ We seek $P(A \cup B)$. First find:

$$P(A) = \frac{10}{30} = \frac{1}{3}, P(B) = \frac{15}{30} = \frac{1}{2}, P(A \cap B) = \frac{5}{30} = \frac{1}{6}$$

Thus, by the addition rule (Theorem 3.6),

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{3} + \frac{1}{2} - \frac{1}{6} = \frac{2}{3}$$

3.13. Six married people are standing in a room. Two people are chosen at random. Find the probability p that: (a) they are married; (b) one is male and one is female.

There are C(12,2)=66 ways to choose 2 people from the 12 people.

- (a) There are 6 married couples; hence p = 6/66 = 1/11.
- (b) There are 6 ways to choose the male and 6 ways to choose the female; hence $p = (6 \cdot 6)/66 =$ 36/66 = 6/11.
- 3.14. Suppose 5 marbles are placed in 5 boxes at random. Find the probability p that exactly 1 of the boxes is empty.

There are exactly 5⁵ ways to place the 5 marbles in the 5 boxes. If exactly 1 box is empty, then 1 box contains 2 marbles and each of the remaining boxes contains 1 marble. There are 5 ways to select the empty box, then 4 way to select the box containing 2 marbles, and C(5,2) = 10 ways to select 2 marbles to go into this box. Finally, there are 3! ways to distribute the remaining 3 marbles among the remaining 3 boxes. Thus

$$p = \frac{5 \cdot 4 \cdot 10 \cdot 3!}{5^5} = \frac{48}{125}$$

3.15. Two cards are drawn at random from an ordinary deck of 52 cards. (See Fig. 3-4.) Find the probability p that: (a) both are hearts, (b) one is a heart and one is a spade.

There are C(52, 2) = 1326 ways to choose 2 cards from the 52-card deck. In other words, n(S) = 1326.

(a) There are C(13, 2) = 78 ways to draw 2 hearts from the 13 hearts; hence

$$p = \frac{\text{number of ways 2 hearts can be drawn}}{\text{number of ways 2 cards can be drawn}} = \frac{78}{1326} = \frac{3}{51}$$

(b) There are 13 hearts and 13 spades, so there are $13 \cdot 13 = 169$ ways to draw a heart and a spade. Thus, p = 169/1326 = 13/102.

FINITE PROBABILITY SPACES

- **3.16.** A sample space S consists of four elements, that is, $S = \{a_1, a_2, a_3, a_4\}$. Under which of the following functions P does S become a probability space?
 - (a) $P(a_1) = 0.4$, $P(a_2) = 0.3$, $P(a_3) = 0.2$, $P(a_4) = 0.3$.
 - (b) $P(a_1) = 0.4$, $P(a_2) = -0.2$, $P(a_3) = 0.7$, $P(a_4) = 0.1$.
 - (c) $P(a_1) = 0.4$, $P(a_2) = 0.2$, $P(a_3) = 0.1$, $P(a_4) = 0.3$.
 - (d) $P(a_1) = 0.4$, $P(a_2) = 0$, $P(a_3) = 0.5$, $P(a_4) = 0.1$.
 - (a) The sum of the values on the points in S exceeds one; hence P does not define S to be a probability space.
 - (b) Since $P(a_2)$ is negative, P does not define S to be a probability space.
 - (c) Each value is nonnegative and their sum is one; hence P does define S to be a probability space.
 - (d) Although $P(a_2) = 0$, each value is still nonnegative and their sum does equal. Thus, P does define S to be a probability space.
- **3.17.** A coin is weighted so that heads is twice as likely to appear as tails. Find P(T) and P(H).

Let P(T) = p; then P(H) = 2p. Now set the sum of the probabilities equal to one, that is, set p + 2p = 1. Then p = 1/3. Thus P(H) = 1/3 and P(B) = 2/3.

- **3.18.** Suppose A and B are events with P(A) = 0.6, P(B) = 0.3, and $P(A \cap B) = 0.2$. Find the probability that:
 - (a) A does not occur.
- (c) A or B occurs.
- (b) B does not occur.
- (d) Neither A nor B occurs.
- (a) By the complement rule, $P(\text{not } A) = P(A^c) = 1 P(A) = 0.4$.
- (b) By the complement rule, $P(\text{not } B) = P(B^c) = 1 P(B) = 0.7$.
- (c) By the addition rule,

$$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.6 + 0.3 - 0.2 = 0.7

(d) Recall [Fig. 3-7(b)] that neither A nor B is the complement of $A \cup B$. Therefore

$$P(\text{neither } A \text{ nor } B) = P((A \cup B)^c) = 1 - P(A \cup B) = 1 - 0.7 = 0.3$$

3.19. A die is weighted so that the outcomes produce the following probability distribution:

Outcome	1	2	3	4	5	6
Probability	0.1	0.3	0.2	0.1	0.1	0.2

Consider the events:

 $A = \{\text{even number}\}, \quad B = \{2, 3, 4, 5\}, \quad C = \{x : x < 3\}, \quad D = \{x : x > 7\}$

Find the following probabilities:

(a) P(A) (b) P(B) (c) P(C) (d) P(D)

For any event E, find P(E) by summing the probabilities of the elements in E.

- (a) $A = \{2, 4, 6\}$, so P(A) = 0.3 + 0.1 + 0.2 = 0.6.
- (b) P(B) = 0.3 + 0.2 + 0.1 + 0.1 = 0.7.
- (c) $C = \{1, 2\}$, so P(C) = 0.1 + 0.3 = 0.4.
- (d) $D = \emptyset$, the empty set. Hence P(D) = 0.

3.20. For the data in Problem 3.19, find: (a) $P(A \cap B)$, (b) $P(A \cup C)$, (c) $P(B \cap C)$.

First find the elements in the event, and then add the probabilities of the elements.

- (a) $A \cap B = \{2, 4\}$, so $P(A \cap B) = 0.3 + 0.1 = 0.4$.
- (b) $A \cup C = \{1, 2, 3, 4, 5\} = \{6\}^c$, so $P(A \cup C) = 1 0.2 = 0.8$.
- (c) $B \cap C = \{2\}$, so $P(B \cap C) = 0.3$.

3.21. Let A and B be events such that $P(A \cup B) = 0.8$, P(A) = 0.4, and $P(A \cap B) = 0.3$. Find:

- (a) $P(A^c)$; (b) P(B); (c) $P(A \cap B^c)$; (d) $P(A^c \cap B^c)$.
- (a) By the complement rule, $P(A^c) = 1 P(A) = 1 0.4 = 0.6$.
- (b) By the addition rule, $P(A \cup B) = P(A) + P(B) P(A \cap B)$. Substitute in this formula to obtain:

$$0.8 = 0.4 + P(B) + 0.3$$
 or $P(B) = 0.1$

- (c) $P(A \cap B^c) = P(A \setminus B) = P(A) P(A \cap B) = 0.4 0.3 = 0.1.$
- (d) By DeMorgan's law, $(A \cup B)^c = A^c \cap B^c$. Thus

$$P(A^c \cap B^c) = P((A \cup B)^c) = 1 - P(A \cup B) = 1 - 0.8 = 0.2$$

3.22. Suppose $S = \{a_1, a_2, a_3, a_4\}$, and suppose P is a probability function defined on S.

- (a) Find $P(a_1)$ if $P(a_2) = 0.4$, $P(a_3) = 0.2$, $P(a_3) = 0.1$.
- (b) Find $P(a_1)$ and $P(a_2)$ if $P(a_3) = P(a_4) = 0.2$ and $P(a_1) = 3P(a_2)$.
- (a) Let $P(a_1) = p$. For P to be a probability function, the sum of the probabilities on the sample points must equal one. Thus, we have

$$p + 0.4 + 0.2 + 0.1 = 1$$
 or $p = 0.3$

(b) Let $P(a_2) = p$ so $P(a_1) = 3p$. Thus

$$3p + p + 0.2 + 0.2 = 1$$
 or $p = 0.15$

Hence $P(a_2) = 0.15$ and $P(a_1) = 0.45$.